DistributedNetworks DistributedNetworks


DHCP and TCP/IP  «Prev  Next»
Lesson 3Optimizing IP performance on a network
ObjectiveDefine how to optimize IP performance on a network.

Optimizing IP Network Performance

To optimize the flow of TCP/IP data within an internetwork requires the classification of the traffic flow so that you can understand where configuring and tuning the TCP/IP implementation might provide performance gains.

Recognizing traffic patterns

The transactions involved between hosts across a network vary from simple datagram interactions with low packet counts to complex authenticated transfers with security and verifications involved. In general, you can categorize packet traffic into two major groups, both of which are sensitive to particular characteristics of a network:
  1. Delay and latency-sensitive traffic
  2. Bandwidth-sensitive traffic

The following Slide Show describes and provides examples of each traffic pattern.
Traffic Patterns 1
1) Traffic Patterns 1
Traffic Patterns 2
2) Traffic Patterns 2
Traffic Patterns 3
3) Traffic Patterns 3
Traffic Patterns 4
4) Traffic Patterns 4

Recognizing Traffic Patterns
Many applications exhibit hybrid traffic-type characteristics, and must be designed to minimize performance limitations when used in a WAN environment.

TCP/IP Performance Factors

The TCP/IP implementation in Windows® 2000 is largely self-tuning, but some design choices made for both the network infrastructure and the software installation can influence the performance that you will ultimately achieve. In particular, when WAN networks span large distances, the delay through a network becomes a significant factor in any design considerations.
Principal factors that influence TCP/IP performance are:
  1. TCP/IP receive window size: This is the buffer required to receive packets in a TCP stream before an acknowledgment is sent. For Ethernet-based TCP connections, the window is normally set to 17,520 bytes, or 16 K rounded up to 12 Maximum Segment Size (MSS) segments. Where network delay is high, you can increase the minimum window size offered for a connection by modifying the registry.
  2. Delay/Bandwidth product: High bandwidth/high delay networks, such as satellite links, require special consideration when you are configuring the network transports and designing the applications being used. When network delay becomes significant, always select the largest bandwidth available for links to maximize performance.
  3. Packet loss on the network: This is usually caused due to network errors or congestion in routers.

There are certain factors that influence performance, but because they are part of the existing ISO layer one and two infrastructure, you may not be able to configure them.

Factors that influence performance

  1. Maximum Transmission Unit (MTU). This is usually set by the underlying network technology. For example, Ethernet provides a 1,500 byte MTU, whereas Token Ring can support up to 17,914 bytes.
  2. Maximum Segment Size (MSS). This is the TCP/UDP payload that can be carried in the MTU. For example, the MSS for an Ethernet MTU of 1,500 bytes is 1,460 bytes.

Note:
In network environments that include links with large delay components, your network design may be required to place network services, authentication, and application servers on both sides of the links to achieve acceptable client performance. This situation is common when dealing with issues related to placement of domain controllers, WINS servers, DHCP Servers, and DNS servers.
The next lesson focuses on how to optimize remote subnets.

Optimizing IP Performance Network- Exercise

Click the Exercise link below to apply what you know about identifying traffic patterns as a first step in improving IP performance.
Optimizing IP Performance Network- Exercise